GPU Performance Optimization on Rock 5B+
Learn advanced techniques to optimize GPU performance on the Rock 5B+ with Mali-G610 MP4 GPU for maximum efficiency.
Introduction
Performance optimization is crucial for embedded GPU applications. The Mali-G610 MP4 GPU on the Rock 5B+ offers significant compute power, but proper optimization techniques are essential to achieve maximum performance.
Understanding Mali-G610 MP4 Architecture
GPU Specifications
- Architecture: Valhall (4th generation)
- Execution Units: 4 shader cores
- Memory: Shared with system RAM
- Theoretical Performance: Up to 1.2 TFLOPS
- Memory Bandwidth: LPDDR4X support
Memory Hierarchy
┌─────────────────────────────────────┐
│ Global Memory │
│ (System RAM) │
├─────────────────────────────────────┤
│ Local Memory │
│ (GPU Cache) │
├─────────────────────────────────────┤
│ Private Memory │
│ (Per Work Item) │
└─────────────────────────────────────┘
OpenCL Optimization Techniques
1. Work Group Size Optimization
// Query device capabilities
cl_uint max_compute_units;
clGetDeviceInfo(device_id, CL_DEVICE_MAX_COMPUTE_UNITS,
sizeof(max_compute_units), &max_compute_units, NULL);
size_t max_work_group_size;
clGetDeviceInfo(device_id, CL_DEVICE_MAX_WORK_GROUP_SIZE,
sizeof(max_work_group_size), &max_work_group_size, NULL);
// Optimal work group size for Mali-G610
size_t optimal_work_group_size = 64; // Usually 32-128 for Mali GPUs
2. Memory Access Patterns
// Good: Coalesced memory access
__kernel void optimized_vector_add(__global const float *a,
__global const float *b,
__global float *c) {
int i = get_global_id(0);
c[i] = a[i] + b[i]; // Coalesced access
}
// Bad: Strided access pattern
__kernel void inefficient_vector_add(__global const float *a,
__global const float *b,
__global float *c) {
int i = get_global_id(0);
int stride = 16; // Strided access reduces performance
c[i * stride] = a[i * stride] + b[i * stride];
}
3. Local Memory Usage
__kernel void matrix_multiply_optimized(__global const float *A,
__global const float *B,
__global float *C,
const int N) {
int row = get_global_id(0);
int col = get_global_id(1);
int local_row = get_local_id(0);
int local_col = get_local_id(1);
// Local memory for work group
__local float local_A[16][16];
__local float local_B[16][16];
float sum = 0.0f;
// Process in tiles
for (int tile = 0; tile < N / 16; tile++) {
// Load data to local memory
local_A[local_row][local_col] = A[row * N + tile * 16 + local_col];
local_B[local_row][local_col] = B[(tile * 16 + local_row) * N + col];
// Synchronize work items
barrier(CLK_LOCAL_MEM_FENCE);
// Compute partial result
for (int k = 0; k < 16; k++) {
sum += local_A[local_row][k] * local_B[k][local_col];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
C[row * N + col] = sum;
}
Vulkan Performance Optimization
1. Command Buffer Optimization
class VulkanCommandBuffer {
private:
VkDevice device;
VkCommandPool commandPool;
std::vector<VkCommandBuffer> commandBuffers;
public:
void createCommandBuffers(uint32_t count) {
commandBuffers.resize(count);
VkCommandBufferAllocateInfo allocInfo{};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.commandPool = commandPool;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandBufferCount = (uint32_t) commandBuffers.size();
if (vkAllocateCommandBuffers(device, &allocInfo, commandBuffers.data()) != VK_SUCCESS) {
throw std::runtime_error("failed to allocate command buffers!");
}
}
void recordCommandBuffer(VkCommandBuffer commandBuffer, uint32_t imageIndex) {
VkCommandBufferBeginInfo beginInfo{};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
if (vkBeginCommandBuffer(commandBuffer, &beginInfo) != VK_SUCCESS) {
throw std::runtime_error("failed to begin recording command buffer!");
}
// Record rendering commands here
if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) {
throw std::runtime_error("failed to record command buffer!");
}
}
};
2. Memory Management
class VulkanMemoryManager {
private:
VkDevice device;
VkPhysicalDevice physicalDevice;
public:
uint32_t findMemoryType(uint32_t typeFilter, VkMemoryPropertyFlags properties) {
VkPhysicalDeviceMemoryProperties memProperties;
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memProperties);
for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
if ((typeFilter & (1 << i)) &&
(memProperties.memoryTypes[i].propertyFlags & properties) == properties) {
return i;
}
}
throw std::runtime_error("failed to find suitable memory type!");
}
void createBuffer(VkDeviceSize size, VkBufferUsageFlags usage,
VkMemoryPropertyFlags properties, VkBuffer& buffer,
VkDeviceMemory& bufferMemory) {
VkBufferCreateInfo bufferInfo{};
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = size;
bufferInfo.usage = usage;
bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
if (vkCreateBuffer(device, &bufferInfo, nullptr, &buffer) != VK_SUCCESS) {
throw std::runtime_error("failed to create buffer!");
}
VkMemoryRequirements memRequirements;
vkGetBufferMemoryRequirements(device, buffer, &memRequirements);
VkMemoryAllocateInfo allocInfo{};
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.allocationSize = memRequirements.size;
allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties);
if (vkAllocateMemory(device, &allocInfo, nullptr, &bufferMemory) != VK_SUCCESS) {
throw std::runtime_error("failed to allocate buffer memory!");
}
vkBindBufferMemory(device, buffer, bufferMemory, 0);
}
};
Performance Profiling
1. OpenCL Profiling
// Enable profiling
cl_command_queue_properties props = CL_QUEUE_PROFILING_ENABLE;
cl_command_queue queue = clCreateCommandQueue(context, device_id, props, NULL);
// Profile kernel execution
cl_event kernel_event;
clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global_size, &local_size,
0, NULL, &kernel_event);
clFinish(queue);
// Get timing information
cl_ulong start_time, end_time;
clGetEventProfilingInfo(kernel_event, CL_PROFILING_COMMAND_START,
sizeof(start_time), &start_time, NULL);
clGetEventProfilingInfo(kernel_event, CL_PROFILING_COMMAND_END,
sizeof(end_time), &end_time, NULL);
double execution_time = (end_time - start_time) / 1000000.0; // Convert to ms
printf("Kernel execution time: %.3f ms\n", execution_time);
2. Memory Transfer Optimization
// Asynchronous memory transfers
cl_event write_event, read_event;
// Non-blocking write
clEnqueueWriteBuffer(queue, buffer, CL_FALSE, 0, size, data,
0, NULL, &write_event);
// Execute kernel after write completes
clEnqueueNDRangeKernel(queue, kernel, 1, &write_event, &global_size,
&local_size, 0, NULL, &kernel_event);
// Non-blocking read
clEnqueueReadBuffer(queue, buffer, CL_FALSE, 0, size, result,
0, NULL, &read_event);
// Wait for completion
clWaitForEvents(1, &read_event);
Advanced Optimization Techniques
1. Vectorized Operations
// Use float4 for vectorized operations
__kernel void vectorized_add(__global const float4 *a,
__global const float4 *b,
__global float4 *c) {
int i = get_global_id(0);
c[i] = a[i] + b[i]; // Processes 4 elements at once
}
2. Loop Unrolling
__kernel void unrolled_reduction(__global const float *input,
__global float *output,
const int N) {
int i = get_global_id(0);
int local_i = get_local_id(0);
__local float local_sum[256];
// Unroll loop for better performance
float sum = 0.0f;
for (int j = 0; j < 4; j++) { // Process 4 elements per iteration
if (i * 4 + j < N) {
sum += input[i * 4 + j];
}
}
local_sum[local_i] = sum;
barrier(CLK_LOCAL_MEM_FENCE);
// Reduction
for (int stride = 128; stride > 0; stride >>= 1) {
if (local_i < stride) {
local_sum[local_i] += local_sum[local_i + stride];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if (local_i == 0) {
output[get_group_id(0)] = local_sum[0];
}
}
3. Memory Bandwidth Optimization
// Use memory mapping for large datasets
cl_mem buffer = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR,
size, NULL, &ret);
// Map memory for direct access
void *mapped_ptr = clEnqueueMapBuffer(queue, buffer, CL_TRUE,
CL_MAP_READ | CL_MAP_WRITE, 0, size,
0, NULL, NULL, &ret);
// Direct memory access (faster than copy)
// ... process data directly ...
// Unmap when done
clEnqueueUnmapMemObject(queue, buffer, mapped_ptr, 0, NULL, NULL);
Performance Monitoring
1. Real-time Performance Metrics
// Monitor GPU utilization
void monitor_gpu_performance(cl_command_queue queue, cl_kernel kernel) {
cl_event events[10];
cl_ulong total_time = 0;
for (int i = 0; i < 10; i++) {
clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global_size,
&local_size, 0, NULL, &events[i]);
}
clFinish(queue);
for (int i = 0; i < 10; i++) {
cl_ulong start, end;
clGetEventProfilingInfo(events[i], CL_PROFILING_COMMAND_START,
sizeof(start), &start, NULL);
clGetEventProfilingInfo(events[i], CL_PROFILING_COMMAND_END,
sizeof(end), &end, NULL);
total_time += (end - start);
clReleaseEvent(events[i]);
}
double avg_time = (total_time / 10.0) / 1000000.0; // Convert to ms
printf("Average kernel time: %.3f ms\n", avg_time);
}
2. Memory Usage Monitoring
// Check memory usage
void check_memory_usage(cl_context context, cl_device_id device) {
cl_ulong global_mem_size;
clGetDeviceInfo(device, CL_DEVICE_GLOBAL_MEM_SIZE,
sizeof(global_mem_size), &global_mem_size, NULL);
cl_ulong local_mem_size;
clGetDeviceInfo(device, CL_DEVICE_LOCAL_MEM_SIZE,
sizeof(local_mem_size), &local_mem_size, NULL);
printf("Global memory: %lu MB\n", global_mem_size / (1024 * 1024));
printf("Local memory: %lu KB\n", local_mem_size / 1024);
}
Best Practices Summary
1. Algorithm Design
- Choose algorithms that map well to parallel execution
- Minimize data dependencies
- Use appropriate data structures
- Consider memory access patterns
2. Memory Management
- Use local memory for frequently accessed data
- Minimize global memory transfers
- Use memory mapping for large datasets
- Implement proper memory alignment
3. Work Group Optimization
- Experiment with different work group sizes
- Use work group barriers effectively
- Balance work distribution
- Consider device capabilities
4. Performance Testing
- Profile your code regularly
- Test with different data sizes
- Monitor memory usage
- Compare with CPU implementations
Common Pitfalls
1. Over-optimization
Don't optimize prematurely. Profile first, then optimize the bottlenecks.
2. Ignoring Memory Bandwidth
Memory bandwidth is often the limiting factor, not compute power.
3. Poor Work Group Sizes
Choose work group sizes that match your algorithm and device capabilities.
4. Synchronization Issues
Use barriers correctly to avoid race conditions.
Conclusion
GPU performance optimization on the Rock 5B+ requires understanding the Mali-G610 MP4 architecture and applying appropriate techniques. By following these guidelines, you can achieve significant performance improvements in your GPU-accelerated applications.
Remember to always profile your code and measure the impact of optimizations. What works for one algorithm may not work for another.
Resources
- OpenCL Specification
- Mali GPU Programming Guide
- Rock 5B+ GPU Documentation
- OpenCL Optimization Best Practices
Happy optimizing! 🚀