Skip to main content

OpenCL Performance Optimization: Maximizing GPU Computing on Rock 5B+

· 7 min read
Phuc Nguyen
Embedded Systems Engineer

Learn advanced OpenCL optimization techniques to maximize GPU computing performance on the Rock 5B+ with Mali-G610 MP4 GPU.

Introduction

OpenCL (Open Computing Language) enables parallel computing across CPUs, GPUs, and other processors. On the Rock 5B+ with its Mali-G610 MP4 GPU, proper optimization can deliver significant performance improvements. This tutorial covers advanced optimization techniques for real-world applications.

Understanding Mali-G610 MP4 Architecture

The Mali-G610 MP4 features:

  • 4 execution units (shader cores)
  • Valhall architecture (4th generation)
  • Shared memory with system RAM
  • Up to 1.2 TFLOPS theoretical performance

Memory Hierarchy

┌─────────────────────────────────────┐
│ Global Memory │
│ (System RAM) │
├─────────────────────────────────────┤
│ Local Memory │
│ (GPU Cache) │
├─────────────────────────────────────┤
│ Private Memory │
│ (Per Work Item) │
└─────────────────────────────────────┘

Optimization Techniques

1. Work Group Size Optimization

The optimal work group size depends on your algorithm and data access patterns:

// Query device capabilities
cl_uint max_compute_units;
clGetDeviceInfo(device_id, CL_DEVICE_MAX_COMPUTE_UNITS,
sizeof(max_compute_units), &max_compute_units, NULL);

size_t max_work_group_size;
clGetDeviceInfo(device_id, CL_DEVICE_MAX_WORK_GROUP_SIZE,
sizeof(max_work_group_size), &max_work_group_size, NULL);

// Optimal work group size for Mali-G610
size_t optimal_work_group_size = 64; // Usually 32-128 for Mali GPUs

2. Memory Access Patterns

Coalesced Memory Access:

// Good: Sequential access pattern
__kernel void optimized_vector_add(__global const float *a,
__global const float *b,
__global float *c) {
int i = get_global_id(0);
c[i] = a[i] + b[i]; // Coalesced access
}

// Bad: Strided access pattern
__kernel void inefficient_vector_add(__global const float *a,
__global const float *b,
__global float *c) {
int i = get_global_id(0);
int stride = 16; // Strided access reduces performance
c[i * stride] = a[i * stride] + b[i * stride];
}

3. Local Memory Usage

Use local memory for frequently accessed data:

__kernel void matrix_multiply_optimized(__global const float *A,
__global const float *B,
__global float *C,
const int N) {
int row = get_global_id(0);
int col = get_global_id(1);
int local_row = get_local_id(0);
int local_col = get_local_id(1);

// Local memory for work group
__local float local_A[16][16];
__local float local_B[16][16];

float sum = 0.0f;

// Process in tiles
for (int tile = 0; tile < N / 16; tile++) {
// Load data to local memory
local_A[local_row][local_col] = A[row * N + tile * 16 + local_col];
local_B[local_row][local_col] = B[(tile * 16 + local_row) * N + col];

// Synchronize work items
barrier(CLK_LOCAL_MEM_FENCE);

// Compute partial result
for (int k = 0; k < 16; k++) {
sum += local_A[local_row][k] * local_B[k][local_col];
}

barrier(CLK_LOCAL_MEM_FENCE);
}

C[row * N + col] = sum;
}

Performance Profiling

1. Enable Profiling

// Create command queue with profiling
cl_command_queue_properties props = CL_QUEUE_PROFILING_ENABLE;
cl_command_queue queue = clCreateCommandQueue(context, device_id, props, NULL);

// Profile kernel execution
cl_event kernel_event;
clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global_size, &local_size,
0, NULL, &kernel_event);

clFinish(queue);

// Get timing information
cl_ulong start_time, end_time;
clGetEventProfilingInfo(kernel_event, CL_PROFILING_COMMAND_START,
sizeof(start_time), &start_time, NULL);
clGetEventProfilingInfo(kernel_event, CL_PROFILING_COMMAND_END,
sizeof(end_time), &end_time, NULL);

double execution_time = (end_time - start_time) / 1000000.0; // Convert to ms
printf("Kernel execution time: %.3f ms\n", execution_time);

2. Memory Transfer Optimization

// Asynchronous memory transfers
cl_event write_event, read_event;

// Non-blocking write
clEnqueueWriteBuffer(queue, buffer, CL_FALSE, 0, size, data,
0, NULL, &write_event);

// Execute kernel after write completes
clEnqueueNDRangeKernel(queue, kernel, 1, &write_event, &global_size,
&local_size, 0, NULL, &kernel_event);

// Non-blocking read
clEnqueueReadBuffer(queue, buffer, CL_FALSE, 0, size, result,
0, NULL, &read_event);

// Wait for completion
clWaitForEvents(1, &read_event);

Real-World Example: Image Processing

Let's optimize a Sobel edge detection algorithm:

__kernel void sobel_optimized(__global const unsigned char *input,
__global unsigned char *output,
const int width, const int height) {
int x = get_global_id(0);
int y = get_global_id(1);
int local_x = get_local_id(0);
int local_y = get_local_id(1);

// Local memory for work group
__local unsigned char local_input[18][18]; // 16x16 + 2 pixel border

// Load data to local memory with border
if (local_x < 16 && local_y < 16) {
int global_x = get_group_id(0) * 16 + local_x;
int global_y = get_group_id(1) * 16 + local_y;

// Load center region
if (global_x < width && global_y < height) {
local_input[local_y + 1][local_x + 1] = input[global_y * width + global_x];
}

// Load borders
if (local_x == 0 && global_x > 0) {
local_input[local_y + 1][0] = input[global_y * width + global_x - 1];
}
if (local_x == 15 && global_x < width - 1) {
local_input[local_y + 1][17] = input[global_y * width + global_x + 1];
}
if (local_y == 0 && global_y > 0) {
local_input[0][local_x + 1] = input[(global_y - 1) * width + global_x];
}
if (local_y == 15 && global_y < height - 1) {
local_input[17][local_x + 1] = input[(global_y + 1) * width + global_x];
}
}

barrier(CLK_LOCAL_MEM_FENCE);

// Apply Sobel filter
if (x > 0 && x < width - 1 && y > 0 && y < height - 1) {
int gx = -local_input[local_y][local_x] + local_input[local_y][local_x + 2]
- 2 * local_input[local_y + 1][local_x] + 2 * local_input[local_y + 1][local_x + 2]
- local_input[local_y + 2][local_x] + local_input[local_y + 2][local_x + 2];

int gy = -local_input[local_y][local_x] - 2 * local_input[local_y][local_x + 1] - local_input[local_y][local_x + 2]
+ local_input[local_y + 2][local_x] + 2 * local_input[local_y + 2][local_x + 1] + local_input[local_y + 2][local_x + 2];

int magnitude = (int)sqrt((float)(gx * gx + gy * gy));
output[y * width + x] = (unsigned char)min(255, max(0, magnitude));
}
}

Advanced Optimization Techniques

1. Vectorized Operations

// Use float4 for vectorized operations
__kernel void vectorized_add(__global const float4 *a,
__global const float4 *b,
__global float4 *c) {
int i = get_global_id(0);
c[i] = a[i] + b[i]; // Processes 4 elements at once
}

2. Loop Unrolling

__kernel void unrolled_reduction(__global const float *input,
__global float *output,
const int N) {
int i = get_global_id(0);
int local_i = get_local_id(0);

__local float local_sum[256];

// Unroll loop for better performance
float sum = 0.0f;
for (int j = 0; j < 4; j++) { // Process 4 elements per iteration
if (i * 4 + j < N) {
sum += input[i * 4 + j];
}
}

local_sum[local_i] = sum;
barrier(CLK_LOCAL_MEM_FENCE);

// Reduction
for (int stride = 128; stride > 0; stride >>= 1) {
if (local_i < stride) {
local_sum[local_i] += local_sum[local_i + stride];
}
barrier(CLK_LOCAL_MEM_FENCE);
}

if (local_i == 0) {
output[get_group_id(0)] = local_sum[0];
}
}

3. Memory Bandwidth Optimization

// Use memory mapping for large datasets
cl_mem buffer = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR,
size, NULL, &ret);

// Map memory for direct access
void *mapped_ptr = clEnqueueMapBuffer(queue, buffer, CL_TRUE,
CL_MAP_READ | CL_MAP_WRITE, 0, size,
0, NULL, NULL, &ret);

// Direct memory access (faster than copy)
// ... process data directly ...

// Unmap when done
clEnqueueUnmapMemObject(queue, buffer, mapped_ptr, 0, NULL, NULL);

Performance Monitoring

1. Real-time Performance Metrics

// Monitor GPU utilization
void monitor_gpu_performance(cl_command_queue queue, cl_kernel kernel) {
cl_event events[10];
cl_ulong total_time = 0;

for (int i = 0; i < 10; i++) {
clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global_size,
&local_size, 0, NULL, &events[i]);
}

clFinish(queue);

for (int i = 0; i < 10; i++) {
cl_ulong start, end;
clGetEventProfilingInfo(events[i], CL_PROFILING_COMMAND_START,
sizeof(start), &start, NULL);
clGetEventProfilingInfo(events[i], CL_PROFILING_COMMAND_END,
sizeof(end), &end, NULL);
total_time += (end - start);
clReleaseEvent(events[i]);
}

double avg_time = (total_time / 10.0) / 1000000.0; // Convert to ms
printf("Average kernel time: %.3f ms\n", avg_time);
}

2. Memory Usage Monitoring

// Check memory usage
void check_memory_usage(cl_context context, cl_device_id device) {
cl_ulong global_mem_size;
clGetDeviceInfo(device, CL_DEVICE_GLOBAL_MEM_SIZE,
sizeof(global_mem_size), &global_mem_size, NULL);

cl_ulong local_mem_size;
clGetDeviceInfo(device, CL_DEVICE_LOCAL_MEM_SIZE,
sizeof(local_mem_size), &local_mem_size, NULL);

printf("Global memory: %lu MB\n", global_mem_size / (1024 * 1024));
printf("Local memory: %lu KB\n", local_mem_size / 1024);
}

Best Practices Summary

1. Algorithm Design

  • Choose algorithms that map well to parallel execution
  • Minimize data dependencies
  • Use appropriate data structures
  • Consider memory access patterns

2. Memory Management

  • Use local memory for frequently accessed data
  • Minimize global memory transfers
  • Use memory mapping for large datasets
  • Implement proper memory alignment

3. Work Group Optimization

  • Experiment with different work group sizes
  • Use work group barriers effectively
  • Balance work distribution
  • Consider device capabilities

4. Performance Testing

  • Profile your code regularly
  • Test with different data sizes
  • Monitor memory usage
  • Compare with CPU implementations

Common Pitfalls

1. Over-optimization

Don't optimize prematurely. Profile first, then optimize the bottlenecks.

2. Ignoring Memory Bandwidth

Memory bandwidth is often the limiting factor, not compute power.

3. Poor Work Group Sizes

Choose work group sizes that match your algorithm and device capabilities.

4. Synchronization Issues

Use barriers correctly to avoid race conditions.

Conclusion

OpenCL optimization on the Rock 5B+ requires understanding the Mali-G610 MP4 architecture and applying appropriate techniques. By following these guidelines, you can achieve significant performance improvements in your GPU-accelerated applications.

Remember to always profile your code and measure the impact of optimizations. What works for one algorithm may not work for another.

Resources

Happy optimizing! 🚀